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A general form of the higher-order nonlinear Satirger equation that includes terms accounting for the
third-order dispersion and the self-steepening effect has been investigated using the Raiglaagity struc-
ture analysis in order to identify the underlying integrable models. This equation fails to pass the Rafstieve
for the entire parameter space except for two specific choices of the parameters. As a consequence, it was
found that two recently introduced higher-order nonlinear Sdinger equations fail to pass the Painleve
integrability test. Moreover, one of those equations describes optical pulses with large frequency shifts as
compared to the chosen carrier frequency that renders that equation inappropriate for describing femtosecond
soliton propagation in monomode optical fibers. Another equation is introduced and bright solitary waves are
provided. These solitary waves describe pulses with either very small or even zero-frequency shifts. The
conditions on fiber parameters for the existence of those solitary waves are also discussed.
[S1063-651%97)12806-9
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I. INTRODUCTION ing envelope approximatiof®].
In order to increase the bit rate in fiber optic communica-

As first pointed out by Hasegawa and Tappdd, the tion systems to more than 100 Gbit/s for a single-carrier
propagation of intense optical signals in nonlinear dispersivérequency, it is necessary to decrease the pulse width. How-
media leads to the formation of optical solitons. Optical soli-€Ver, as light pulses become shorter, the standard NLS equa-
tons in fibers propagate, for appropriate combinations ofion becomes inadequate. Thus additional terms which de-
pulse shape and intensity, without any change in their shapecribe the effects of third-order dispersion and self-
because the self-phase modulation effects due to thel€€pening must be added to that equation.
intensity-dependent refractive index of the fiber exactly com- 1 "€ model equatiofil0—19 for the complex pulse enve-

pensate for the pulse-spreading effects of group-velocity dis!—ope amplitude of the light wave in monomode optical fibers

persion. Optical solitons have been observed in many phys® the subpicosecond-femtosecond domain is the higher-

cal settings, such as monomode fib¢gd, femtosecond order NLS equation

lasers[3], and bulk optical material$4] in which spatial aq 1% #q
diffraction takes the role of dispersion. What makes optical i&—z+ > a_TZHSﬁ

solitons particularly attractive for applications in high-bit

rate all-optical long-distance communication systems is their aq 9

remarkable robustness. The reason for the soliton robustness ~— N? |Q|2q+ia1|Q|2(9_-|-”L i azqa—T(|Q|2) =0, (1
is that the wave number of the soliton is distinct from that of

the linear dispersive wave, so that there is no energy eXyhere

change between thef5].

The propagation of picosecond optical pulses in mono- | B,|z t—2/v, 5 nszPOTS
mode optical fibers is modeled by the nonlinear Sdhrger Z= T2 = Ty Im, 2
(NLS) equation[1]. This equation governs the general situ- 0
ation of dispersive propagation of a pulse envelope with a | B4l 2 n' o
high carrier frequency in a weakly nonlinear medium. Al- P —

=, a=——t—+—,
though the NLS equation includes only two physical effects, 6/B2ITo wolo  NTo  ITo

group-velocity dispersion and self-phase modulation, it de- , ,

scribes a variety of nonlinear optical phenomena. Depending _ 2 n 4L

on the relative signs of linear group-velocity dispersion and wolg NTy Ty

nonlinearily induced self-phase modulation, they combine to

allow bright solitons[6], modulational instability{7], and  In relations(2) and (3), 3, is the group-velocity dispersion
dark solitons[8]. The NLS equation was generalized to a coefficient, 35 is the third-order dispersion coefficienty is
system of two coupled NLS equations describing the puls¢he group velocity, Ty is the pulse width Trwhm
propagation in birefringent optical fibers in the slowly vary- =1.763T), nis the linear index of refractiom,, is the Kerr
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nonlinearity coefficientw is the carrier frequency; is the  are free from movable critical manifolds. In order to check
velocity of light, A is the effective core are®, is the peak for the integrability of partial differential equations we ana-
power of the input pulse, andis the frequency-dependent lyze whether these equations have the Painprogerty as it
radius of the fiber mode. Primes denote the derivative wittwas introduced by Weiss, Tabor, and Carne@8g]. The
respect to frequency, and all parameters are evaluated at camethod involves expanding the solution in a Laurent series
rier frequencywy. Equation(1) does not take into account about a singular or pole manifold. Also, the method gives
either the Raman effe¢tl5] and the fiber loss. The latter is rise to a powerful formalism from which one may deduce the
assumed to be overall compensated for by the technique dfax pairs, the Beklund transformations, the Hirota equa-
distributed amplification. In this paper we consider only thetions, the motion invariants, symmetries and commuting
case of anomalous second-order dispersitime group- flows, and the geometrical structure of the phase sfi2ice
velocity dispersion coefficienB, is negative and negative Next we take the soliton numb&=1 and perform the
third-order dispersion &5 is negativé. For this choice of Painleve test of Eq. (1) for the general case:a;:a;
fiber parameters we give exact bright solitary-wave solutions=1:0;:0,. Based on physical grounds we choose the pa-
of the higher-order NLS equatiail). rameterso; and o, as positive quantities. We mention that

Recently, Eq(1) was generalized to a set of two coupled for the next four choices of the parameters
higher-order NLS equations which can be derived from thes:a:a,=1:6:0 [30], 1:6:3[31,32, 1:2:2[35], and 1:6:6
Maxwell equations in order to investigate the effects of bi-[20,35,38 exact solutions of the extended NLS equatith
refringence on pulse propagation in the femtosecond regimiave been provided without first performing its Painleire
[16—20. In the present paper we apply the Painleuegu-  gularity structure analysis. Based on the results of the Pain-
larity structure analysif21—27 to the fairly general higher- leve integrability test we show that only the choices
order NLS equatioril) in order to find whether this nonlin- e:a;:2,=1:6:0 and1:6:3 allow the solutions to be true
ear partial differential equation passes the Painlevesolitons in a strict mathematical sense.
integrability test. We mention that the Painlesigularity For simplicity we rewrite Eq(1) as
structure analysis was previously performed to both the stan-
dard NLS equatiofi28] and the system of two coupled NLS .49 1 d°q o 7%q ,94
equations describing pulse propagation in birefringent fibers' 3z 7 2 2 * lalfa+ie|—m +ofdl®—- +o2g
[29]. It was demonstrated in RgR8] that the standard NLS
equation passes the Painletest and the associated &a =0 (4)
lund transformation and the Hirota bilinearization were con- o, ]
structed. For the system of two coupled NLS equations it" order to perform the Painlevtest of Eq.(4), we first put
was shown that there were only two choices of parametefl=a+ib, wherea andb are, respectively, the real part and
values for which the system possesses the Pairgewgerty ~ the imaginary part ofq. Then we obtain the following
[29]. coupled partial differential equations:

In Sec. II, we perform in detail the Painleugtegrability 1 o ) )
test as it was introduced by Weiss, Tabor, and Carnevale &1 zbutb(a®+b%) +efay+[(o1+202)a"+ a1b%]a,
[23], and we arrive at the conclu'sio,n that the higher-order +20,abb} =0, (5)
NLS equation(1) passes the Painleviest only for two
choices of the ratios of the parametersy,: @,=1:6:0 (the
Hirota equatior{30]), and 1:6:3(the Sasa-Satsuma equation
[31,32). Then in Sec. Ill we find a bright single solitary- +20,aba}=0. (6)
wave solution of the higher-order NLS equatidn for arbi-
trary values of the parametess a,, anda, [33,34. This  The Painleveanalysis in the formulation of Ref23] essen-
general solution reduces to those recently reported for thgally consists of three stagedi) determination of the
particular cases:a;:a,=1:6:6 [20], [35,36 and 1:2:2 leading-order behavionji) identifying the resonances, and
[35]. We also discuss the appropriateness of these particuldiii) verifying that a sufficient number of arbitrary functions
solitary waves for describing subpicosecond-femtoseconeéxists without the introduction of movable critical singularity
pulse propagation in monomode optical fibers. We havananifolds. To start with, let us introduce the generalized
found that only in the case when the parametersz;, and  Laurent expansions for the two functioasandb,

a, are chosen in such a way that:a;:a,
=1:(2+ 67):(2+ 8,), where 6; and 6, are either zero or
small quantities, the exact single solitary wave properly de-
scribes an optical pulse, having either a small or even zero-

frequency shift with respect to the carrier frequency, that isjn the neighborhood of the singular manifalt{z,t) =0 with

in the_ frequency region of validity of the extended NLS ¢, -0 and®,#0. With the very simple choice of the ex-

equation(1). pansion variable® (Kruskal ansatz[22]): ®(zt)=t

—W¥(z), whereW¥(z) is an arbitrary analytic function dof,

the coefficient functions; and b; become functions of

alone, and this makes the calculations as simple as possible.
The Painleveanalysis is one of the systematic methods to  Assuming the leading order of the solutions in the forms

identify the integrable cases of the nonlinear partial differena=a,®P1 andb=by®P2, and introducing these expressions

tial equationg21-27; that is, to check whether the solutions in Egs.(5) and (6) (considered in the complex domaiwe

d
c(al®

at

—b,+ ta+a(a®+b?) —e{by+[(01+20,)b%+ oya?]b,

a=dPLY, a(zt)®, b=0P2Y bi(z,)d), (7)
j=0 =0

IIl. PAINLEVE SINGULARITY STRUCTURE ANALYSIS
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determine the exponents; and p, and the coefficients,  This result indicates that eitheg or by can be chosen arbi-
andbg by balancing the dominant terms. We thus obtain trarily.
Now we find the resonances, that is, the powers at which

P1—3=3p;—1=2p,+p;—1, (8)  the arbitrary functions can enter into the series. Thus we
substitute the following expressions into the coupled system
p—3=3p,—1=2p;+p,— 1. ©  (5) and(6):
By_solxing this system ‘we obtr_iin the unique solution a:aoq)—lJraj(Dj—l’ (11)
p;=p,=—1. The expansion coefficientg, andb, are de-
termined by b=bo® 1+b;dI "L (12
a§+b§=— 6 (10) Keeping the leading order terms alone, we obtain a linear

(01+205,)° system of two algebraic equationsan andb; :

{(i—1)(j—2)(j—3)+j[(g1+20) a5+ o1b5]— (01+20,)(3a5+bd)}a;+ 2[ jo,— (01+205) Jagheb; =0, (13)

2[joy— (014 207)Jaghoa; +{(j —1)(j—2)(j—3) +j[(01+ 202)b3+ 0185] — (01 + 20,) (3b3+ad)1bj=0. (14

In order to have a nontrivial solution fa; andb;, we 6
obtain the following compatibility condition which provides bo( 1- U—)
the values of resonances: a3a1+ agbgb,= Seg ! , (16)
1
e ni-3i-a) -6 20, ] a 1_3)
JTDjG=3)(—4)|] 61+5+—(01+202) =0. , 0 o1
(15) aoboal+ bob]_: - 280’1 . (17)

_ L _ Becausej=1 is a resonance, one of the functioas and
The NLS equation1) can pass the Painlevest only if 1, ghoulid be arbitrary in order that E¢4) possesses the
Fhe resonances are integers. We find that(Eg). admits four Painleveproperty. Thus imposing that both Eq46) and
integer resonances, namejys —1,0,3, and 4. The other two (17 coincide up to a factor, we obtain the following com-
remaining resonances become integers only for the followingyatibility condition:
parameter values:
(@) The caser,=0. In this case the two remaining reso-
nances ar¢=1 and 5. (a3+b3)
(b) The caser,:0,=1:1. Here the two remaining reso-
nances ar¢=3 and 3.
(c) The casar,:o;=1:2. Inthis case the two remaining From Eq.(18) we obtaino;=6. Thus we arrive at the well-
resonances arg=2 and 4. known Hirota equatiof30]. We shall verify that in this case
In order that the Painléveroperty is satisfied we have to the Laurent expansion admits six arbitrary functions, and
ensure that sufficient number of arbitrary functions exist atherefore the Hirota equation passes the Painteseas ex-
the appropriate integer resonance values. We now briefly dig2ected.
cuss the search for arbitrary functions at the resonance values Proceeding further in this way and collecting the coeffi-
above. The resonance jat — 1 corresponds to the arbitrari- cients of® 2 in Egs.(5) and(6) one obtains
ness ofd itself.

6)
1-—|=0. (19
01

by bi ag®,
az—a - a_() 6e (19
A. The caseo,=0
By imposing that the coefficient b ~* vanish we obtain b:b. bebZ bed
a3+ b= —6/o,. Thus from the leading order terms we have S et St et 1 (20)

= > ,
obtained that the resonancejat0 corresponds to the fact 6eay & 6e

that one of the two functionay andby is arbitrary. Next we

substitute the Laurent seri€® in the systen{5) and(6), and  thus botha, andb, are fixed. This result is consistent with
collect the coefficients of different powers @, so that we the lack of the resonande=2.

can evaluate the further coefficients. By collecting the coef- Next, by collecting the coefficients df ~* in Egs.(5) and
ficients of® 2 in Egs.(5) and(6), we obtain (6), the following relation is obtained:
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ag by bi o, % ag(o2—2) ag?,

z
_2o _ _ _ bos+ + 220, 28
by 3" 246%agb;  Geald, 1202 246%bg %7 203% | o @9
(21

as

By solving this system we are left wita, and b, both of
them being fixed. This contradiction shows that the perturbed
NLS equation(1) with the coefficientss:a :a,=1:05:0,
does not pass the Painletest. This result is intimately re-
lated to the fact that in this case the degree of multiplicity of

Thus one of the quantitiea; or bs is arbitrary (=3 is a
resonance By collecting the coefficients ob? in Egs. (5)
and(6), we obtain

2
a :@b _ by n b1 n bs 8030, the resonancg=3 exceeds the dimension of the appropriate
“Thy 4 1446302 T 24c%apb?  6cb2 T 72:%b3 vectorial spacéequal to 2 in this cageAs a particular result
we obtain that Eqg. (1) with the coefficients
baao, b, ao®; (29 &@1a,=1:2:2 and1:6:6[35,3 does not pass the Pain-

12saib, * 12cagby  144e°b3" leve test for integrability.
This relation indicates that eithex, or b, is an arbitrary
function, as it should be, becauge 4 is a resonance.

Finally, by collecting the coefficients ob! in Egs. (5) For this choice of the parameters we fimﬁ+ bg
and (6), and by using all the above relationships, one can=—3/20,, thus one of these functions being arbitrary. In this
easily see that one of the functioas andbs can be chosen case the resonances are the following integers=-1, 0, 2,
arbitrarily, a result consistent with the fact thgt5 is a 3, 4, and 4. Collecting the coefficients®f 2 in Egs.(5) and
resonance. In this way we established that there exists th@), we are left with a linear system with the unique solution
required number of arbitrary functions corresponding to the

C. The caseo=20,

resonance valugs=—1, 0, 1, 3, 4, and 5. In conclusion, for A= bo(205—3) 29
the choice of coefficients:a;:a,=1:6:0, Eq.(1) passes ! 6o.e '
the Painleveest.
a0(20'2_3)
B. The caseo;= o0, 1= 6o, (30)
In this case we obtain the relationshég+b3=—2/o,
between the coefficients of the leading order terms of theyext by collecting the coefficients @b 2, we obtain
Laurent expansion; thus one of the functiamqgb, is arbi-
trary. Here the resonances are the following integer numbers: _ _
j=—1,0, 3, 3, 3, and 4. Now we briefly discuss the search a,=— Do ) (202 33)(202 3 _ L (3D
for arbitrary functions at the resonance values above. Col- Qo 2403879 40,889
lecting the coefficients o ~2 in the systen(5) and(6), we
obtain a linear system with the unique solution This result implies that one of the functioms and b, is
arbitrary (j =2 is a resonangeCollecting the coefficients of
__bo(92—2) 29 ®~1, we obtain a linear system of equations forandbs,
! 4o, and, imposing that these equations should coincide up to a
factor, becausg =3 is a resonance, we are left with the
ag(o2—2) following compatibility condition:
1= oe (29
g8
(02— 3)(ag+bg)=0. (32)

This is consistent with the lack of the resonarjeel. By

proceeding further in this way and collecting the coefficient S : -
of @2, we obtain the values g, andby: S;’?.us we obtainr,=3 and the relationship between and

(05— 80,+12) . ayd,
a
480'%82 0

(25) ag 1 ao;

T 6s az=—by+ e A ——
3 by 4323, 6eb3  24e’by

(33

(05-80,112)  byd, . » .

b,=— 180252 bot+ 5 (26) By collecting the coefficients ob in Egs.(5) and(6), and
2 introducing the expressions af andb; (j=0, 1, 2, and 3

we find that botha, andb, can be chosen arbitrarily, a result
consistent with the fact that the degree of multiplicity of the
resonancg =4 is 2. Thus the perturbed NLS equatith
with the coefficientse: a;:a,=1:6:3 passes the Painleve
bo(op—2) byd test. We notice that both the single and multiple soliton so-
- ——2 5 07z _0, (27)  lutions of this equation were provided by the inverse scatter-

20%¢ L ing method[31,37.

This result is consistent with the fact that 2 is not a reso-
nance. Finally collecting the coefficients & * the follow-
ing system is obtained:
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Ill. BRIGHT SOLITARY WAVE SOLUTIONS a solitary wave in the region of validity of the extended NLS
OF THE HIGHER-ORDER NLS EQUATION equation(1), that is, in the frequency region in the neighbor-
hood of the chosen carrier frequency. It should be mentioned
that these real pulse-type solutions of the NLS equafion
can never be true solitons because the regimes of integrabil-
ity and of validity of the pulse-type solutions are mutually

For soliton numbeN=1 and for arbitrary values of the
parameterse, «q, and a,, a bright solitary wave solution
[33,34] of Eq. (1) can be written in the following form:

_ -1 exclusive.

a(T.2)=A sechin(T-v "2~ To)] In the particular caseS;=5,=0, that is, for the ratios

Xexp(—iéT+ikZ+igg), (39 1:2:2 of the coefficiente, «4, and a,, the solitary wave
(34) does not exhibits any frequency shift. It becomes the
where following bright solitary wave solution of the corresponding

o extended NLS equation which was also found[8%] by
A= 6e ) vl e (2= 30— ¢ using the Hirota direct method:
a1+2as] '

q(T,2)=n sechinp(T—v 1Z—Ty)Jexpi kZ+i ),

1 (35
k=3P — ) +5 (77— £2), ) o ,

2 wherev = e7?, andx = 37°. This particular solution prop-
erly describe the propagation of ultra short pulses in mono-
mode optical fibers having no shift in frequency with respect
to the carrier frequency.

It is of interest to compare the bright single soliton of the
standard NLS equation

and

_ 6e— a1—2a2
B 128&2

We supposed here that in the anomalous dispersion region q(T,2) =7 sech p(T+£Z—Ty)]
both second- and third-order dispersion coefficients are nega-
tive (¢ is a positive numbgr We notice that unlike the stan- Xexg —iéT+it(9?—E)Z+ipy] (36
dard NLS equation the quantit§, which is proportional to
the frequency shifd wy, is a fixed parameter. The solitary to the bright solitary wave34) of the higher-order NLS
wave (34) is not a soliton in a strict mathematical sense forequation(1). It should be noticed that in E€36) £ and 7 are
every ratios of the parameters, «a;, and «, but for  arbitrary parameters. However, the true solitt86) de-
g:ay:a,=1:6:0 (the Hirota equatiod30]), and 1:6:3(the  scribes a pulse with a frequency shift proportional to the
Sasa-Satsuma equatipsd,32). soliton parameteg. Thus the parametgr has to be small in

Recently, by using the Hirota meth§80] both bright and  order to assure a small frequency shift with respect to the
dark solutions of the higher-order NLS equatith) were  carrier frequency. The two-parameter family of soliton solu-
found for the case whes:a;:a,=1:6:6[35,3¢ (see also tions (36) has the salient feature that the normalized peak
Ref.[20] for a generalization to two coupled NLS equationsintensity | (the square of the soliton amplitudand the
with higher-order terms Due to the fact that in this case the soliton width 7=1/7 obey the relationship 7?=1. For
higher-order NLS equation does not pass the Paintest  pright solitary wave solution£34) of the higher-order NLS
such solutions are not solitons in the strict mathematicabquation (1) the product | 2=[1+(8;+235,)/6] 1<1.
sense, and should be referred to more accurately as solitamus, the product7? attains its maximum value, equal to
waves. 1, for 5;= 5,=0; that is, for the particular solitary way85)

We see from relation3) that the coefficients of higher- that corresponds to the ratios 1:2:2 of the coeffici-
order nonlinear terms are approximately equaFa,. In ents ¢, a;, and a,. These ratios can be achieved, for
the following we consider that the parameters a;, and  example, for the following two sets of fiber parameters:
ay are such that:ayta;=1:(2+61):1(2+6,). Inthis case  g,=—-2.5 pdkm, B;=-0.012 pdkm or B,=—0.5
the amplitudeA and the parametef of the solitary wave ps/km, B;=-0.0024 p¥km at A=1.55 um. Although
(34 become [1-(8;+28,)/(6+8,+28,)]"n and  the third-order dispersion coefficiefit; has to be negative
—[(61+26,)/12¢(2+ 6,) ], respectively. The solitary wave and very small, the drawing of such dispersion-shifted fibers
(34) exhibits a frequency shifh wy=[(;+265)/24]wg. IN s technically possibl¢37], and we expect that the simplest
the particular case:a;:a,=1:6:6,that is,5,=8,=4, the  form (35) of the bright solitary wavé34) could be observed
corresponding carrier frequency shift wy=wy/2. This  experimentally in a properly tailored optical fiber.
large frequency shift renders the exact bright solitary wave
solution of the 1:6:6 model, obtained by use of the Hirota
method, not suitable for describing bright subpicosecond-
femtosecond soliton propagation in monomode optical fibers. We performed the Painlévengularity structure analysis
Thus the exact solution given i85] for the 1:6:6 model to the general higher-order NLS equatidn in order to con-
describes a pulse with a frequency shift which takes it wellclude whether this nonlinear partial differential equation
out of the region of validity of Eq(1). passes the Painlewetegrability test. The main result of this

When |8y],]8,|]<1, the frequency shift Aw, paper is that the NLS equatiqd) fails to pass the integra-
=[(81+28,)124] wy is much less than the carrier frequency bility test for almost the entire parameter space. Moreover,
wg. Therefore, in this case, the exact soluti@4) describes we have shown that two recently introduced higher-order

IV. CONCLUSIONS
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NLS equation$35,36 fail to pass the Painléevest. We have Eqg.(1). We can anticipate that this new extended NLS equa-

also shown that some of the bright solitary waves given irtion passes the Painlewest only if the ratio of its coeffi-

Refs.[20] and[35] by using the Hirota direct method, de- cients is either-&:a;:a,=—1:6:3 or—1:6:0.Thus dark

scribe pulses with large frequency shifts. Thus those exaaoliton solutions of these higher-order NLS equations could

solutions are inappropriate for describing subpicosecondbe obtained by using the powerful inverse scattering trans-

femtosecond soliton propagation in monomode optical fibersform formalism and these results will be published else-

Another higher-order nonlinear Scldiager equation is in-  where.

troduced, and bright solitary waves are given. These solitary Note addedThe article by M. Gedalin, T. C. Scott, and

waves properly describe optical pulses with very small fre-Y. B. Band[Phys. Rev. Lett78, 448 (1997] was recently

guency shifts. There are also given typical values of fibeibrought to the authors’ attention. This article performed the

parameters for the existence of these subpicosecondame singularity analysis as the current paper, arriving at the

femtosecond bright solitary waves. same results, as well as using the Hirota method to derive
Finally, we mention that the results contained in this pa-analytical solutions.

per can be rather easily extended to dark pulses in mono-

mode optical flpgrs. In th{; case we should con5|der_mat ACKNOWLEDGMENT

and B3 are positive quantitiegositive second-order disper-

sion and positive third-order dispersjoThe corresponding The work of D.M. at Friedrich-Schiller-Universitalena

extended NLS equation differs from E@) only by the signs was supported by the Deutsche Forschungsgemeinschaft

of the coefficients in front of the second and third terms in(DFG), Bonn.
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