
PHYSICAL REVIEW E JULY 1997VOLUME 56, NUMBER 1
Painlevéanalysis and bright solitary waves of the higher-order nonlinear Schro¨dinger equation
containing third-order dispersion and self-steepening term

D. Mihalache,1,2 N. Truta,3 and L.-C. Crasovan1
1Department of Theoretical Physics, Institute of Atomic Physics, P.O. Box MG-6, Bucharest, Romania

2Institute for Solid State Theory and Theoretical Optics, Friedrich-Schiller-Universita¨t Jena,
Max-Wien-Platz 1, D-07743 Jena, Germany

3Department of Physics, Institute of Civil Engineering, Bucharest, Romania
~Received 29 October 1996; revised manuscript received 17 March 1997!

A general form of the higher-order nonlinear Schro¨dinger equation that includes terms accounting for the
third-order dispersion and the self-steepening effect has been investigated using the Painleve´ singularity struc-
ture analysis in order to identify the underlying integrable models. This equation fails to pass the Painleve´ test
for the entire parameter space except for two specific choices of the parameters. As a consequence, it was
found that two recently introduced higher-order nonlinear Schro¨dinger equations fail to pass the Painleve´
integrability test. Moreover, one of those equations describes optical pulses with large frequency shifts as
compared to the chosen carrier frequency that renders that equation inappropriate for describing femtosecond
soliton propagation in monomode optical fibers. Another equation is introduced and bright solitary waves are
provided. These solitary waves describe pulses with either very small or even zero-frequency shifts. The
conditions on fiber parameters for the existence of those solitary waves are also discussed.
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I. INTRODUCTION

As first pointed out by Hasegawa and Tappert@1#, the
propagation of intense optical signals in nonlinear dispers
media leads to the formation of optical solitons. Optical so
tons in fibers propagate, for appropriate combinations
pulse shape and intensity, without any change in their sh
because the self-phase modulation effects due to
intensity-dependent refractive index of the fiber exactly co
pensate for the pulse-spreading effects of group-velocity
persion. Optical solitons have been observed in many ph
cal settings, such as monomode fibers@2#, femtosecond
lasers@3#, and bulk optical materials@4# in which spatial
diffraction takes the role of dispersion. What makes opti
solitons particularly attractive for applications in high-b
rate all-optical long-distance communication systems is th
remarkable robustness. The reason for the soliton robust
is that the wave number of the soliton is distinct from that
the linear dispersive wave, so that there is no energy
change between them@5#.

The propagation of picosecond optical pulses in mo
mode optical fibers is modeled by the nonlinear Schro¨dinger
~NLS! equation@1#. This equation governs the general sit
ation of dispersive propagation of a pulse envelope wit
high carrier frequency in a weakly nonlinear medium. A
though the NLS equation includes only two physical effec
group-velocity dispersion and self-phase modulation, it
scribes a variety of nonlinear optical phenomena. Depend
on the relative signs of linear group-velocity dispersion a
nonlinearily induced self-phase modulation, they combine
allow bright solitons@6#, modulational instability@7#, and
dark solitons@8#. The NLS equation was generalized to
system of two coupled NLS equations describing the pu
propagation in birefringent optical fibers in the slowly var
561063-651X/97/56~1!/1064~7!/$10.00
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ing envelope approximation@9#.
In order to increase the bit rate in fiber optic communic

tion systems to more than 100 Gbit/s for a single-carr
frequency, it is necessary to decrease the pulse width. H
ever, as light pulses become shorter, the standard NLS e
tion becomes inadequate. Thus additional terms which
scribe the effects of third-order dispersion and se
steepening must be added to that equation.

The model equation@10–15# for the complex pulse enve
lope amplitude of the light wave in monomode optical fibe
in the subpicosecond-femtosecond domain is the high
order NLS equation
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n8

nT0
1
4r 8
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. ~3!

In relations~2! and ~3!, b2 is the group-velocity dispersion
coefficient,b3 is the third-order dispersion coefficient,vg is
the group velocity, T0 is the pulse width (TFWHM
51.763T0), n is the linear index of refraction,n2 is the Kerr
1064 © 1997 The American Physical Society
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56 1065PAINLEVÉ ANALYSIS AND BRIGHT SOLITARY WAVES . . .
nonlinearity coefficient,v0 is the carrier frequency,c is the
velocity of light,Aeff is the effective core area,P0 is the peak
power of the input pulse, andr is the frequency-dependen
radius of the fiber mode. Primes denote the derivative w
respect to frequency, and all parameters are evaluated a
rier frequencyv0. Equation~1! does not take into accoun
either the Raman effect@15# and the fiber loss. The latter i
assumed to be overall compensated for by the techniqu
distributed amplification. In this paper we consider only t
case of anomalous second-order dispersion~the group-
velocity dispersion coefficientb2 is negative! and negative
third-order dispersion (b3 is negative!. For this choice of
fiber parameters we give exact bright solitary-wave soluti
of the higher-order NLS equation~1!.

Recently, Eq.~1! was generalized to a set of two couple
higher-order NLS equations which can be derived from
Maxwell equations in order to investigate the effects of
refringence on pulse propagation in the femtosecond reg
@16–20#. In the present paper we apply the Painleve´ singu-
larity structure analysis@21–27# to the fairly general higher-
order NLS equation~1! in order to find whether this nonlin
ear partial differential equation passes the Painl´
integrability test. We mention that the Painleve´ singularity
structure analysis was previously performed to both the s
dard NLS equation@28# and the system of two coupled NL
equations describing pulse propagation in birefringent fib
@29#. It was demonstrated in Ref.@28# that the standard NLS
equation passes the Painleve´ test and the associated Ba¨ck-
lund transformation and the Hirota bilinearization were co
structed. For the system of two coupled NLS equation
was shown that there were only two choices of param
values for which the system possesses the Painleve´ property
@29#.

In Sec. II, we perform in detail the Painleve´ integrability
test as it was introduced by Weiss, Tabor, and Carne
@23#, and we arrive at the conclusion that the higher-or
NLS equation ~1! passes the Painleve´ test only for two
choices of the ratios of the parameters«:a1 :a251:6:0 ~the
Hirota equation@30#!, and 1:6:3~the Sasa-Satsuma equatio
@31,32#!. Then in Sec. III we find a bright single solitary
wave solution of the higher-order NLS equation~1! for arbi-
trary values of the parameters«, a1, anda2 @33,34#. This
general solution reduces to those recently reported for
particular cases«:a1 :a251:6:6 @20#, @35,36# and 1:2:2
@35#. We also discuss the appropriateness of these partic
solitary waves for describing subpicosecond-femtosec
pulse propagation in monomode optical fibers. We ha
found that only in the case when the parameters«, a1, and
a2 are chosen in such a way that«:a1 :a2
51:(21d1):(21d2), where d1 and d2 are either zero or
small quantities, the exact single solitary wave properly
scribes an optical pulse, having either a small or even z
frequency shift with respect to the carrier frequency, that
in the frequency region of validity of the extended NL
equation~1!.

II. PAINLEVE´ SINGULARITY STRUCTURE ANALYSIS

The Painleve´ analysis is one of the systematic methods
identify the integrable cases of the nonlinear partial differ
tial equations@21–27#; that is, to check whether the solution
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are free from movable critical manifolds. In order to che
for the integrability of partial differential equations we an
lyze whether these equations have the Painleve´ property as it
was introduced by Weiss, Tabor, and Carnevale@23#. The
method involves expanding the solution in a Laurent se
about a singular or pole manifold. Also, the method giv
rise to a powerful formalism from which one may deduce t
Lax pairs, the Ba¨cklund transformations, the Hirota equa
tions, the motion invariants, symmetries and commut
flows, and the geometrical structure of the phase space@27#.

Next we take the soliton numberN51 and perform the
Painlevé test of Eq. ~1! for the general case«:a1 :a2
51:s1 :s2. Based on physical grounds we choose the
rameterss1 ands2 as positive quantities. We mention th
for the next four choices of the paramete
«:a1 :a251:6:0 @30#, 1:6:3 @31,32#, 1:2:2 @35#, and 1:6:6
@20,35,36# exact solutions of the extended NLS equation~1!
have been provided without first performing its Painleve´ sin-
gularity structure analysis. Based on the results of the P
levé integrability test we show that only the choice
«:a1 :a251:6:0 and1:6:3 allow the solutions to be tru
solitons in a strict mathematical sense.

For simplicity we rewrite Eq.~1! as

i
]q

]z
1
1

2

]2q

]t2
1uqu2q1 i«F]3q]t3

1s1uqu2
]q

]t
1s2q

]

]t
~ uqu2!G

50 ~4!

In order to perform the Painleve´ test of Eq.~4!, we first put
q5a1 ib, wherea andb are, respectively, the real part an
the imaginary part ofq. Then we obtain the following
coupled partial differential equations:

az1
1
2btt1b~a21b2!1«$attt1@~s112s2!a

21s1b
2#at

12s2abbt%50, ~5!

2bz1
1
2att1a~a21b2!2«$bttt1@~s112s2!b

21s1a
2#bt

12s2abat%50. ~6!

The Painleve´ analysis in the formulation of Ref.@23# essen-
tially consists of three stages:~i! determination of the
leading-order behavior,~ii ! identifying the resonances, an
~iii ! verifying that a sufficient number of arbitrary function
exists without the introduction of movable critical singulari
manifolds. To start with, let us introduce the generaliz
Laurent expansions for the two functionsa andb,

a5Fp1(
j>0

aj~z,t !F
j , b5Fp2(

j>0
bj~z,t !F

j , ~7!

in the neighborhood of the singular manifoldF(z,t)50 with
FzÞ0 andF tÞ0. With the very simple choice of the ex
pansion variableF ~Kruskal ansatz @22#!: F(z,t)5t
2C(z), whereC(z) is an arbitrary analytic function ofz,
the coefficient functionsaj and bj become functions ofz
alone, and this makes the calculations as simple as poss

Assuming the leading order of the solutions in the form
a5a0F

p1 andb5b0F
p2, and introducing these expression

in Eqs.~5! and ~6! ~considered in the complex domain!, we
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determine the exponentsp1 and p2 and the coefficientsa0
andb0 by balancing the dominant terms. We thus obtain

p12353p12152p21p121, ~8!

p22353p22152p11p221. ~9!

By solving this system we obtain the unique soluti
p15p2521. The expansion coefficientsa0 andb0 are de-
termined by

a0
21b0

252
6

~s112s2!
. ~10!
s
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This result indicates that eithera0 or b0 can be chosen arbi
trarily.

Now we find the resonances, that is, the powers at wh
the arbitrary functions can enter into the series. Thus
substitute the following expressions into the coupled sys
~5! and ~6!:

a5a0F
211ajF

j21, ~11!

b5b0F
211bjF

j21. ~12!

Keeping the leading order terms alone, we obtain a lin
system of two algebraic equations inaj andbj :
$~ j21!~ j22!~ j23!1 j @~s112s2!a0
21s1b0

2#2~s112s2!~3a0
21b0

2!%aj12@ js22~s112s2!#a0b0bj50, ~13!

2@ js22~s112s2!#a0b0aj1$~ j21!~ j22!~ j23!1 j @~s112s2!b0
21s1a0

2#2~s112s2!~3b0
21a0

2!%bj50. ~14!
-

nd

ffi-

h

In order to have a nontrivial solution foraj andbj , we
obtain the following compatibility condition which provide
the values of resonances:

~ j11! j ~ j23!~ j24!F j 226 j151
12s2

~s112s2!
G50.

~15!

The NLS equation~1! can pass the Painleve´ test only if
the resonances are integers. We find that Eq.~15! admits four
integer resonances, namely,j521,0,3, and 4. The other two
remaining resonances become integers only for the follow
parameter values:

~a! The cases250. In this case the two remaining res
nances arej51 and 5.

~b! The cases2 :s151:1. Here the two remaining reso
nances arej53 and 3.

~c! The cases2 :s151:2. In this case the two remainin
resonances arej52 and 4.

In order that the Painleve´ property is satisfied we have t
ensure that sufficient number of arbitrary functions exist
the appropriate integer resonance values. We now briefly
cuss the search for arbitrary functions at the resonance va
above. The resonance atj521 corresponds to the arbitrar
ness ofF itself.

A. The cases250

By imposing that the coefficient ofF24 vanish we obtain
a0
21b0

2526/s1. Thus from the leading order terms we ha
obtained that the resonance atj50 corresponds to the fac
that one of the two functionsa0 andb0 is arbitrary. Next we
substitute the Laurent series~7! in the system~5! and~6!, and
collect the coefficients of different powers ofF, so that we
can evaluate the further coefficients. By collecting the co
ficients ofF23 in Eqs.~5! and ~6!, we obtain
g

t
is-
es

f-

a0
2a11a0b0b15

b0S 12
6

s1
D

2«s1
, ~16!

a0b0a11b0
2b152

a0S 12
6

s1
D

2«s1
. ~17!

Becausej51 is a resonance, one of the functionsa1 and
b1 should be arbitrary in order that Eq.~4! possesses the
Painlevéproperty. Thus imposing that both Eqs.~16! and
~17! coincide up to a factor, we obtain the following com
patibility condition:

~a0
21b0

2!S 12
6

s1
D50 . ~18!

From Eq.~18! we obtains156. Thus we arrive at the well-
known Hirota equation@30#. We shall verify that in this case
the Laurent expansion admits six arbitrary functions, a
therefore the Hirota equation passes the Painleve´ test as ex-
pected.

Proceeding further in this way and collecting the coe
cients ofF22 in Eqs.~5! and ~6! one obtains

a25
b1
6«

2
b1
2

a0
1
a0Fz

6«
, ~19!

b25
b1b0
6«a0

2
b0b1

2

a0
2 1

b0Fz

6«
; ~20!

thus botha2 andb2 are fixed. This result is consistent wit
the lack of the resonancej52.

Next, by collecting the coefficients ofF21 in Eqs.~5! and
~6!, the following relation is obtained:
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a35
a0
b0
b31

b1
24«2a0b0

2
b1
2

6«a0
2b0

2
a0z

12«b0
2 1

Fz

24«2b0
.

~21!

Thus one of the quantitiesa3 or b3 is arbitrary (j53 is a
resonance!. By collecting the coefficients ofF0 in Eqs. ~5!
and ~6!, we obtain

a45
a0
b0
b42

b1
144«3b0

2 1
b1
2

24«2a0b0
2 1

b3
6«b0

2 1
a0a0z
72«2b0

3

2
b1a0z

12«a0
2b0

1
b1z

12«a0b0
2

a0Fz

144«3b0
2 . ~22!

This relation indicates that eithera4 or b4 is an arbitrary
function, as it should be, becausej54 is a resonance.

Finally, by collecting the coefficients ofF1 in Eqs. ~5!
and ~6!, and by using all the above relationships, one c
easily see that one of the functionsa5 andb5 can be chosen
arbitrarily, a result consistent with the fact thatj55 is a
resonance. In this way we established that there exists
required number of arbitrary functions corresponding to
resonance valuesj521, 0, 1, 3, 4, and 5. In conclusion, fo
the choice of coefficients«:a1 :a251:6:0, Eq.~1! passes
the Painleve´ test.

B. The cases15s2

In this case we obtain the relationshipa0
21b0

2522/s2

between the coefficients of the leading order terms of
Laurent expansion; thus one of the functionsa0 ,b0 is arbi-
trary. Here the resonances are the following integer numb
j521, 0, 3, 3, 3, and 4. Now we briefly discuss the sea
for arbitrary functions at the resonance values above. C
lecting the coefficients ofF23 in the system~5! and~6!, we
obtain a linear system with the unique solution

a152
b0~s222!

4s2«
, ~23!

b15
a0~s222!

4s2«
. ~24!

This is consistent with the lack of the resonancej51. By
proceeding further in this way and collecting the coefficie
of F22, we obtain the values ofa2 andb2:

a252
~s2

228s2112!

48s2
2«2

a01
a0Fz

6«
, ~25!

b252
~s2

228s2112!

48s2
2«2

b01
b0Fz

6«
. ~26!

This result is consistent with the fact thatj52 is not a reso-
nance. Finally collecting the coefficients ofF21 the follow-
ing system is obtained:

a0z2
b0~s222!

2s2
3«2

1
b0Fz

s2«
50, ~27!
n

he
e

e

rs:
h
l-

s

b0z1
a0~s222!

2s2
3«2

1
a0Fz

s2«
50. ~28!

By solving this system we are left witha0 andb0, both of
them being fixed. This contradiction shows that the perturb
NLS equation~1! with the coefficients«:a1 :a251:s2 :s2
does not pass the Painleve´ test. This result is intimately re
lated to the fact that in this case the degree of multiplicity
the resonancej53 exceeds the dimension of the appropria
vectorial space~equal to 2 in this case!. As a particular result
we obtain that Eq. ~1! with the coefficients
«:a1 :a251:2:2 and1:6:6 @35,36# does not pass the Pain
levé test for integrability.

C. The cases152s2

For this choice of the parameters we finda0
21b0

2

523/2s2, thus one of these functions being arbitrary. In th
case the resonances are the following integers:j521, 0, 2,
3, 4, and 4. Collecting the coefficients ofF23 in Eqs.~5! and
~6!, we are left with a linear system with the unique soluti

a152
b0~2s223!

6s2«
, ~29!

b15
a0~2s223!

6s2«
. ~30!

Next by collecting the coefficients ofF22, we obtain

a252
b0
a0
b21

~2s223!~s223!

24s2
3«2a0

2
Fz

4s2«a0
. ~31!

This result implies that one of the functionsa2 and b2 is
arbitrary (j52 is a resonance!. Collecting the coefficients of
F21, we obtain a linear system of equations fora3 andb3,
and, imposing that these equations should coincide up
factor, becausej53 is a resonance, we are left with th
following compatibility condition:

~s223!~a0
21b0

2!50. ~32!

Thus we obtains253 and the relationship betweena3 and
b3:

a35
a0
b0
b31

1

432«3b0
2

a0z
6«b0

2 1
Fz

24«2b0
. ~33!

By collecting the coefficients ofF0 in Eqs.~5! and~6!, and
introducing the expressions ofaj andbj ( j50, 1, 2, and 3!,
we find that botha4 andb4 can be chosen arbitrarily, a resu
consistent with the fact that the degree of multiplicity of t
resonancej54 is 2. Thus the perturbed NLS equation~1!
with the coefficients«:a1 :a251:6:3 passes the Painlev´
test. We notice that both the single and multiple soliton
lutions of this equation were provided by the inverse scat
ing method@31,32#.
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III. BRIGHT SOLITARY WAVE SOLUTIONS
OF THE HIGHER-ORDER NLS EQUATION

For soliton numberN51 and for arbitrary values of the
parameterse, a1, anda2, a bright solitary wave solution
@33,34# of Eq. ~1! can be written in the following form:

q~T,Z!5A sech@h~T2v21Z2T0!#

3exp~2 i jT1 ikZ1 iw0!, ~34!

where

A5hS 6«

a112a2
D 1/2, v215«~h223j2!2j,

k5«j~3h22j2!1
1

2
~h22j2!,

and

j5
6«2a122a2

12«a2
.

We supposed here that in the anomalous dispersion re
both second- and third-order dispersion coefficients are n
tive (« is a positive number!. We notice that unlike the stan
dard NLS equation the quantityj, which is proportional to
the frequency shiftDv0, is a fixed parameter. The solitar
wave ~34! is not a soliton in a strict mathematical sense
every ratios of the parameters«, a1, and a2 but for
«:a1 :a251:6:0 ~the Hirota equation@30#!, and 1:6:3~the
Sasa-Satsuma equation@31,32#!.

Recently, by using the Hirota method@30# both bright and
dark solutions of the higher-order NLS equation~1! were
found for the case when«:a1 :a251:6:6 @35,36# ~see also
Ref. @20# for a generalization to two coupled NLS equatio
with higher-order terms!. Due to the fact that in this case th
higher-order NLS equation does not pass the Painleve´ test,
such solutions are not solitons in the strict mathemat
sense, and should be referred to more accurately as so
waves.

We see from relations~3! that the coefficients of higher
order nonlinear terms are approximately equala1.a2. In
the following we consider that the parameters«, a1, and
a2 are such that«:a1 :a251:(21d1):(21d2). In this case
the amplitudeA and the parameterj of the solitary wave
~34! become @12(d112d2)/(61d112d2)#

1/2h and
2@(d112d2)/12«(21d2)#, respectively. The solitary wav
~34! exhibits a frequency shiftDv05@(d112d2)/24#v0. In
the particular case«:a1 :a251:6:6, that is,d15d254, the
corresponding carrier frequency shift isDv05v0/2. This
large frequency shift renders the exact bright solitary wa
solution of the 1:6:6 model, obtained by use of the Hiro
method, not suitable for describing bright subpicoseco
femtosecond soliton propagation in monomode optical fib
Thus the exact solution given in@35# for the 1:6:6 model
describes a pulse with a frequency shift which takes it w
out of the region of validity of Eq.~1!.

When ud1u,ud2u!1, the frequency shift Dv0
5@(d112d2)/24#v0 is much less than the carrier frequen
v0. Therefore, in this case, the exact solution~34! describes
on
a-

r

l
ry

e

-
s.

ll

a solitary wave in the region of validity of the extended NL
equation~1!, that is, in the frequency region in the neighbo
hood of the chosen carrier frequency. It should be mentio
that these real pulse-type solutions of the NLS equation~1!
can never be true solitons because the regimes of integr
ity and of validity of the pulse-type solutions are mutua
exclusive.

In the particular cased15d250, that is, for the ratios
1:2:2 of the coefficients«, a1, anda2, the solitary wave
~34! does not exhibits any frequency shift. It becomes
following bright solitary wave solution of the correspondin
extended NLS equation which was also found in@35# by
using the Hirota direct method:

q~T,Z!5h sech@h~T2v21Z2T0!#exp~ ikZ1 iw0!,
~35!

wherev215eh2, andk5 1
2h

2. This particular solution prop-
erly describe the propagation of ultra short pulses in mo
mode optical fibers having no shift in frequency with resp
to the carrier frequency.

It is of interest to compare the bright single soliton of t
standard NLS equation

q~T,Z!5h sech@h~T1jZ2T0!#

3exp@2 i jT1 i 12 ~h22j2!Z1 iw0# ~36!

to the bright solitary wave~34! of the higher-order NLS
equation~1!. It should be noticed that in Eq.~36! j andh are
arbitrary parameters. However, the true soliton~36! de-
scribes a pulse with a frequency shift proportional to t
soliton parameterj. Thus the parameterj has to be small in
order to assure a small frequency shift with respect to
carrier frequency. The two-parameter family of soliton so
tions ~36! has the salient feature that the normalized pe
intensity I ~the square of the soliton amplitude! and the
soliton width t51/h obey the relationshipI t251. For
bright solitary wave solutions~34! of the higher-order NLS
equation ~1! the product I t25@11(d112d2)/6#21,1.
Thus, the productI t2 attains its maximum value, equal t
1, for d15d250; that is, for the particular solitary wave~35!
that corresponds to the ratios 1:2:2 of the coeffi
ents «, a1, and a2. These ratios can be achieved, f
example, for the following two sets of fiber paramete
b2522.5 ps2/km, b3520.012 ps3/km or b2520.5
ps2/km, b3520.0024 ps3/km at l51.55 mm. Although
the third-order dispersion coefficientb3 has to be negative
and very small, the drawing of such dispersion-shifted fib
is technically possible@37#, and we expect that the simple
form ~35! of the bright solitary wave~34! could be observed
experimentally in a properly tailored optical fiber.

IV. CONCLUSIONS

We performed the Painleve´ singularity structure analysis
to the general higher-order NLS equation~1! in order to con-
clude whether this nonlinear partial differential equati
passes the Painleve´ integrability test. The main result of thi
paper is that the NLS equation~1! fails to pass the integra
bility test for almost the entire parameter space. Moreov
we have shown that two recently introduced higher-or
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NLS equations@35,36# fail to pass the Painleve´ test. We have
also shown that some of the bright solitary waves given
Refs. @20# and @35# by using the Hirota direct method, de
scribe pulses with large frequency shifts. Thus those ex
solutions are inappropriate for describing subpicoseco
femtosecond soliton propagation in monomode optical fib
Another higher-order nonlinear Schro¨dinger equation is in-
troduced, and bright solitary waves are given. These soli
waves properly describe optical pulses with very small f
quency shifts. There are also given typical values of fi
parameters for the existence of these subpicosec
femtosecond bright solitary waves.

Finally, we mention that the results contained in this p
per can be rather easily extended to dark pulses in mo
mode optical fibers. In this case we should consider thatb2
andb3 are positive quantities~positive second-order dispe
sion and positive third-order dispersion!. The corresponding
extended NLS equation differs from Eq.~1! only by the signs
of the coefficients in front of the second and third terms
ev

et

.
t.

y,
,
d,

,

y

n

ct
d-
s.

ry
-
r
d-

-
o-

Eq. ~1!. We can anticipate that this new extended NLS eq
tion passes the Painleve´ test only if the ratio of its coeffi-
cients is either2«:a1 :a2521:6:3 or21:6:0.Thus dark
soliton solutions of these higher-order NLS equations co
be obtained by using the powerful inverse scattering tra
form formalism and these results will be published els
where.

Note added. The article by M. Gedalin, T. C. Scott, an
Y. B. Band @Phys. Rev. Lett.78, 448 ~1997!# was recently
brought to the authors’ attention. This article performed
same singularity analysis as the current paper, arriving at
same results, as well as using the Hirota method to de
analytical solutions.
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